
IAPS: Decreasing Software-Based Packet Steering
Overhead Through Interrupt Reduction

Maike Helbig
College of Computing and Informatics

Sungkyunkwan University
Suwon, South Korea

hema@g.skku.edu

Younghoon Kim
College of Computing and Informatics

Sungkyunkwan University
Suwon, South Korea
kyhoon@gmail.com

Abstract—Packet Steering is often performed in hardware,
rendering the software-based packet steering mechanisms of the
Linux kernel obsolete. However, the ability to redistribute packets
later during network processing could help achieve a more par-
allelized network stack. Unfortunately, existing software-based
packet steering schemes yield minimal performance gain at high
communication costs. This paper proposes Interrupt Avoidance
Packet Steering (IAPS), a novel packet steering scheme that
reduces software-based packet steering overhead. IAPS decreases
communication costs by avoiding hardware interrupt triggers
during packet steering. IAPS increases application throughput
by up to 4.3% and the packet per hardware interrupt ratio by
up to 4x.

Index Terms—Packet Steering, Network Processing, RPS/RFS,
Hardware Interrupts

I. INTRODUCTION

Packet steering is a discipline in which network packets
received by a host machine are distributed onto different cores
for further processing. Its purpose is to scale out and distribute
network processing in multicore systems. While originally a
software-based discipline, nowadays, packet steering has been
widely offloaded to Network Interface Cards (NICs).

Hardware-based packet steering has the advantage of dis-
tributing packet processing load at no cost to the operating
system. Despite this significant advantage, hardware-based
packet steering lacks a unique property of software-based
packet steering: The ability to redistribute packets. The redis-
tribution of packets at the software level could have intriguing
application scenarios, such as disaggregating the network
processing pipeline into smaller parts, which could enable
more fine-grained resource scaling, which has been named one
of the big challenges in the current Linux network stack [1].

However, compared to hardware-based solutions, software-
based packet steering incurs impermissible communication
overhead. Software-based solutions utilize hardware interrupts
(hardirqs) to notify target cores of incoming packets to guaran-
tee the highest possible reactivity. Unfortunately, hardirqs lead
to unpredictable latency inflation in interrupted processes, so
their use is generally frowned upon.

Yet, hardirqs in network processing have been accepted as
a necessary evil, and the challenge of reducing them while
retaining their benefits has been the target of research in the

Fig. 1: System with three CPUs and two NIC receive queues
using software- and hardware-based packet steering.

past [2], [3]. Still, the challenge of reducing hardirqs during
software-based packet steering remains open.

This paper introduces Interrupt Avoidance Packet Steering
(IAPS), a novel packet steering algorithm that prioritizes
minimizing the number of required hardirqs during software-
based packet steering. IAPS uses the knowledge of hardirq
triggers during packet steering to prioritize selecting cores
that will avoid said triggers. We evaluate IAPS alongside
other packet steering algorithms in a high-throughput, high-
contention environment to see whether a) IAPS successfully
reduces the number of hardirqs, and b) decreasing hardirqs
results in significant performance increases. Our results show
that IAPS increases the number of packets being processed for
every hardirq by a factor of four while increasing application
throughput by up to 4.3%.

II. BACKGROUND & MOTIVATION

A. Packet Steering

Packet Steering in the current Linux kernel can occur at two
levels: hardware and software. Hardware-based packet steering



is performed directly at the NIC. Upon arrival of a new packet,
the NIC enqueues it in one of its receive queues (RX queues).
This is where the hardware-based packet steering happens.

If a NIC has only one RX queue, no packet steering is
required. If there are multiple RX queues, the decision of
which queue to send the packet to is made using a packet
steering algorithm. This process is shown in the lower part
of Fig. 1. Two packet steering schemes operate at this level:
Receive Side Scaling (RSS) and accelerated Receive Flow
Steering (aRFS). Once packets have entered an RX queue,
the NIC sends a hardirq to the CPU that is associated with
the queue. Since an RX queue is only ever associated with
one CPU at a time, the packet steering algorithm chooses not
only the target RX queue but also the target CPU processing
the interrupt. These cores will be referred to as interrupt
processing cores. Once the interrupt processing core receives
an interrupt from the NIC, it executes an interrupt handling
routine which eventually leads to the driver-level and netdevice
subsystem-level packet processing. At the end of this stage,
software-based packet steering is performed.

The interrupt processing core applies a packet steering
algorithm to determine the target CPU for the current packet.
Packet steering schemes operating at this level are Receive
Packet Steering (RPS) and Receive Flow Steering (RFS). If the
target CPU is the interrupt processing core itself, it proceeds
to protocol processing. Otherwise, it enqueues the packet on
a per-CPU backlog. This process can be seen in the middle of
Fig. 1. When a packet is the first to enter a target CPU’s
backlog, the interrupt processing core schedules the target
CPU to receive an Inter-Processor Interrupt (IPI). Once the
interrupt processing core is done with its tasks, it sends an
IPI to every scheduled target CPU. This triggers a hardirq on
the target CPU. Those CPUs will be referred to as protocol
processing cores. The protocol processing core will execute
an interrupt handling routine, after which it begins further
protocol processing. Packets that have been processed are
finally enqueued on a socket’s receive queue to await reception
by the application.

B. Packet Steering Algorithms

Packet steering algorithms define how a target core for
packet steering is chosen. There are two packet steering
algorithms in common use: One used by RSS/RPS and one
used by RFS/aRFS.

RSS/RPS uses a simple packet steering algorithm. Its goal
is to evenly distribute the processing load among available
CPUs while assigning packets from the same connection to the
same CPUs. The algorithm is based on a hash value calculated
over the packet’s 5-tuple. The hash is used to perform a table
lookup, which produces the target CPU. This algorithm offers
good load distribution and keeps the target selection simple.

The goal of the packet steering algorithm used in RFS/aRFS
is to improve the locality of network and application pro-
cessing. The algorithm selects the target CPU by checking
which CPU performed the most recent receive action from the
application. It relies on auxiliary code in the receive system

call, which - upon successful packet reception - updates a flow
table utilized by the algorithm to identify the application core.
By steering packets to the application core, cache locality can
be improved, while also guaranteeing that a packet will not
be processed on a remote NUMA node.

C. Problem Statement

Existing software-based packet steering schemes are dated.
They select target CPUs based on criteria that are not crucial
anymore in modern systems.

RPS tries to evenly distribute packets across all available
cores, but since it is a software-based packet steering scheme,
it only distributes the protocol processing part. This part has
been shown to only incur minor overhead compared to other
aspects of network processing [4]. Therefore, prioritizing it to
be processed by as many cores as possible is unnecessary.
Spreading out network processing evenly across all target
cores has furthermore been shown to lead to higher tail
latencies as opposed to fully saturating a few cores [5].

RFS, on the other hand, steers packets to the application
core. At the software level, this would only yield minor
benefits. Since the initial reception of the packet has already
been performed by the interrupt processing core, all data
structures required for network processing will have been
allocated there. Therefore, a large part of network processing
will have already been performed on a core that might have
poor locality to the application core. Furthermore, since the
data copy from the kernel to userspace performed by the
application core mostly incurs the largest overhead during
network processing [4], steering a packet to an application-
remote, NUMA-local core has been shown to yield better
performance than steering it to the application core [1].

In short, existing packet steering algorithms are better suited
for hardware-based packet steering than software-based packet
steering, which is why the former replaced the latter. We be-
lieve that software-based packet steering can be repurposed to
achieve new goals such as network processing disaggregation,
but for this, it needs a novel packet steering scheme that
addresses the main obstacle: Communication overhead.

III. PROPOSED SOLUTION

To decrease the overhead incurred by frequent IPIs, we
propose IAPS, a novel packet steering scheme that prioritizes
steering packets to cores in a way that minimizes the number
of necessary IPIs. In this section, we first define the packet
steering algorithm used by IAPS. Then, we describe how to
manage the data needed for the algorithm’s decision-making.

A. IAPS’s Packet Steering Algorithm

When selecting a core, we want to select the one that will
not result in triggering an IPI as often as possible. Software-
based packet steering refrains from triggering an IPI only if it
knows that the new protocol processing core has already been
notified of the arrival of new packets. This is implemented
by enqueueing every new packet on an input queue - one
part of a CPU’s backlog - and only sending an IPI if the



length of the queue before insertion is 0, i.e. the packet is the
first packet to be enqueued. Any following packet that is put
on the input queue will be processed as part of the protocol
processing triggered by the first packet’s IPI. Therefore, by
actively steering packets to cores that already have packets
enqueued in their input queue, the number of IPIs can be
effectively reduced. A core that has at least one packet in
its input queue is henceforth referred to as a busy core. When
choosing a target core, it is important to not just assign a
packet to any of the busy cores. When steering packets to
random busy cores, two packets of the same connection could
be enqueued on two different cores at the same time. If the
processing on those cores proceeds at different speeds, packets
of the same connection could be processed out-of-order which
can lead to overheads in transport protocols that guarantee
in-order delivery such as TCP. To avoid this, IAPS prefers
steering packets to the core that processed the prior packet
of the same connection, provided that said core is still busy.
Suppose the previous core is not busy anymore. In that case, it
implies that any prior packet has already started being actively
processed, so steering the packet to another busy core will
not result in out-of-order processing. Should no busy core be
available, the algorithm defaults to RFS’s approach of steering
the packet to the application core.

B. Busy Core Management

As established in III-A, steering a packet to a core that
already has work enqueued reduces IPIs. However, because
packets are processed rapidly, checking the length of every
CPU’s input queue each time the algorithm is executed is too
slow. Therefore, busy cores need to be proactively monitored,
so that when the algorithm runs, information on busy cores
is already available. This is achieved by maintaining a list of
busy cores. With a list, the algorithm only has to check whether
the list is empty or not to know if a busy core is available. If
the list is non-empty, any of the cores can be chosen as the
target. This keeps target selection from becoming unreasonably
complicated. Cores are inserted into the busy list when the first
packet is enqueued on their empty input queue and removed
when the input queue has been emptied again. To prevent race
conditions on the busy list, all operations are guarded with
spin locks. Since all operations on the list are very quick, no
significant synchronization overhead can be observed.

IV. EVALUATION

A. System Information & Experimental Setup

All experiments were conducted on two machines directly
connected over a 100Gbps link. Both machines have an Intel
Core i9-10980XE processor with one socket and 18 physical
cores, so results only apply to non-NUMA environments. Both
are equipped with an Intel E810-C 100G NIC. Though the
systems are equipped with 100G NICs, line rate cannot be
achieved, because each NIC port is connected using 8*8GT/s
PCIe lanes, limiting the effective maximum throughput to a
little over 50 Gbps [6]. The Ubuntu version is 20.04.6 and the

Linux Kernel version is 6.10.8, with the receiver running a
modified version that includes the IAPS implementation.

Experiments were run using iperf version 3.17.1 on both
the sender and receiver. During all experiments, the irqbalance
service was disabled. To force earlier bottlenecks, both packet
steering and application processing have been limited to eight
physical cores. RSS is evaluated with eight NIC RX queues,
each mapped to one of the eight physical cores. All software-
based packet steering schemes are evaluated with only one
NIC RX queue. Each experiment was run 10 times and the
values in all figures represent the mean over those runs.

B. Throughput Comparison

To evaluate the effectiveness of IAPS, we compared its
performance with other packet steering schemes. We observe
the throughput at which the receiver can process incoming
traffic as the number of connections increases.

RSS is used as a baseline. It steers packets at the hardware
level so traffic is evenly distributed across cores without in-
curring any communication overhead. As seen in Fig. 2a, RSS
reaches a saturation point at four connections and maintains a
steady throughput even as connections increase to 32. All of
the software-based algorithms also reach their peak at four
connections, after which they start declining. Because the
software-based schemes only have one CPU acting as the
interrupt processing core, it eventually becomes the bottleneck.
This is corroborated by the number of dropped packets shown
in Fig. 2b. We verified that the drops are caused by an
overflowing RX queue. Up until four connections, packet
drops are rather sporadic. After that, packet drops increase
significantly, leading to a decline in throughput. Notably,
IAPS’s packet drops spike later than RFS or RPS. This seems
to be part of why it maintains a throughput of above 50 Gbps
up to 16 connections, as opposed to RPS or RFS, which
drop below 50 Gbps at eight and 16 connections, respectively.
This suggests that IAPS has a positive effect on the interrupt
processing core’s per-packet processing time since the only
reason the RX queue overflows later than during other packet
steering schemes is an interrupt processing core being able
to process the packets in the RX queue faster. However, the
lower number of packet drops is not the only reason for the
IAPS’s performance improvement. At 32 connections, Fig. 2b
shows that IAPS incurs the highest number of packet drops,
yet its throughput is still higher than RPS or RFS with an
improvement of 4.3% and 4.2%, respectively. The average
number of packets processed for each IPI in Fig. 2c explains
this. For any number of connections except for one, IAPS
processes more packets per IPI than RPS or RFS. At its
maximum at 32 connections, it processes near 4x as many
packets per IPI as the other schemes. This shows that IAPS
achieves its goal, it also proves that IPIs do affect a system’s
performance when using software-based packet steering.

C. Algorithm Effectiveness

To better understand how successful IAPS works, we mon-
itored its target core selection during the experiment. When



1 2 4 8 16 32
Connections

40

42

44

46

48

50

52
G
bp
s

IAPS
RFS
RPS
RSS

Scheme

(a) Throughput per connection

1 2 4 8 16 32
Connections

0

50,000

100,000

150,000

200,000

250,000

D
ro

pp
ed

 P
ac

ke
ts

IAPS
RFS
RPS

Scheme

(b) Dropped Packet Count

1 2 4 8 16 32
Connections

0

1

2

3

4

5

Pa
ck

et
 P

er
 IP

I

IAPS
RFS
RPS

Scheme

(c) Packet per IPI per connection

Fig. 2: Results for different Algorithms

1 2 4 8 16 32
Connections

0%

20%

40%

60%

Pr
ob
ab
ili
ty

(a) Previous still
busy

1 2 4 8 16 32
Connections

0%

20%

40%

60%

Pr
ob
ab
ili
ty

(b) Choose new busy
core

1 2 4 8 16 32
Connections

0%

20%

40%

60%

Pr
ob
ab
ili
ty

(c) No busy core
available

Fig. 3: Percentage of steering decisions made by IAPS

IAPS chooses a target core, there are three possible cases:
1) It finds that the core that processed the previous packet

is still busy and chooses it as the target (Fig. 3a)
2) The previous target core has gone idle and a new busy

target core is found (Fig. 3b)
3) The previous target core has gone idle and there is no

other busy core available (Fig. 3c)
Case 1 and 2 avoid IPIs, whereas case 3 would trigger one. The
percentages of how often each outcome was chosen by IAPS
can be seen in Fig. 3. The general trend is that as server load
increases, the likelihood of finding a new busy core increases,
while the likelihood of finding no busy core or finding the
previous core still busy decreases.

Notably, the likelihood of case 1 and 3 are decreasing
at different rates. The percentage of case 1 declines until
eight connections and plateaus afterward, while case 3 steadily
decreases as connections increase. This suggests that case 1’s
decline is driven by the increase of maximum busy cores and
case 3’s decline by the increase in connections. As connections
increase, two things happen: First, every connection attributes
for a smaller part of the total throughput, and second, the
effectiveness of accumulating smaller packets into bigger
packets using Generic Receive Offload (GRO) decreases [4].
This means that, assuming a balanced distribution, the load
of traffic in Gbps processed by every core will decrease until
8 connections and then stay relatively stable, explaining why
case 1’s likelihood plateaus. At the same time, the number of
total steered packets increases steadily as connections increase,
increasing the likelihood of there being at least one busy core

available during steering, decreasing the likelihood of case 3.

V. CONCLUSION

This paper presented IAPS, a novel packet steering scheme
that aims to enable the usage of software-based packet steering
in new application scenarios by designing a packet steering
algorithm to minimize IPI-induced communication overhead.
The experiments run to compare IAPS to other packet steering
schemes show promise. IAPS was able to increase packet
processed per IPI by a factor of four while increasing ap-
plication throughput by up to 4.3%. We believe that find-
ing new applications for software-based packet steering is
an interesting research field and future work will focus on
exploring scenarios in which real-life applications can benefit
from IAPS.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
insightful feedback. This work was partly supported by the
National Research Foundation of Korea (NRF) grant funded
by the Korea government (MSIT) (No. RS-2024-00348376,
High-Intelligence, High-Versatility, High-Adaptability Rein-
forcement Learning Methods for Performing Complex Tasks).

REFERENCES

[1] Q. Cai, M. Vuppalapati, J. Hwang, C. Kozyrakis, and R. Agarwal,
“Towards µ s tail latency and terabit ethernet: disaggregating the host
network stack,” in Proceedings of the ACM SIGCOMM 2022 Conference,
2022, pp. 767–779.

[2] J. H. Salim, R. Olsson, and A. Kuznetsov, “Beyond softnet,” in 5th Annual
Linux Showcase & Conference (ALS 01), 2001.

[3] P. Cai and M. Karsten, “Kernel vs. user-level networking: Don’t throw out
the stack with the interrupts,” Proceedings of the ACM on Measurement
and Analysis of Computing Systems, vol. 7, no. 3, pp. 1–25, 2023.

[4] Q. Cai, S. Chaudhary, M. Vuppalapati, J. Hwang, and R. Agarwal,
“Understanding host network stack overheads,” in Proceedings of the
2021 ACM SIGCOMM 2021 Conference, 2021, pp. 65–77.

[5] T. Barbette, G. P. Katsikas, G. Q. Maguire Jr, and D. Kostić, “Rss++ load
and state-aware receive side scaling,” in Proceedings of the 15th interna-
tional conference on emerging networking experiments and technologies,
2019, pp. 318–333.

[6] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-Buedo, and
A. W. Moore, “Understanding pcie performance for end host networking,”
in Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication, 2018, pp. 327–341.


