
i-NVMe: Isolated NVMe over TCP for a
Containerized Environment

Seongho Lee, Ikjun Yeom and Younghoon Kim∗

Department of Computer Science and Engineering, College of Computing and Informatics
Sungkyunkwan University, Suwon, Republic of Korea

Emails: {sk1528, ikjun and yhoon}@skku.edu

Abstract—Non-Volatile Memory Express (NVMe) over TCP is
an efficient technology for accessing remote Solid State Drives
(SSDs); however, it may cause a serious interference issue when
used in a containerized environment. In this study, we propose
a CPU isolation scheme for NVMe over TCP in such an envi-
ronment. The proposed scheme measures the CPU usage of the
NVMe over TCP worker, charges it to containers in proportion
to their NVMe traffic, and schedules containers to ensure isolated
sharing of the CPU. However, because the worker runs with a
higher priority than normal containers, it may not be possible
to achieve CPU isolation with container scheduling alone. To
solve this problem, we also control the CPU usage of the worker
by throttling NVMe over TCP traffic. The proposed scheme
is implemented on a real testbed for evaluation. We perform
extensive experiments with various workloads and demonstrate
that the scheme can provide CPU isolation even in the presence
of excessive NVMe traffic.

Index Terms—File and storage system, Scheduling, Resource
management

I. INTRODUCTION

Recently, disaggregated storage has been widely deployed
in modern data center to satisfy the increasing demand for
huge data storage volume of ML and big data processing [1],
[2]. Unlike traditional storage systems, such as direct-attached
storage and storage area networks (SAN), in which capacity
expansion is limited by physical drive bays and expansion
chassis, disaggregated storage is a flexible and scalable solu-
tion since a number of storage devices can be allocated to any
server using a high-speed network fabric.

Non-Volatile Memory Express over Fabrics (NVMe-oF) is
an enabling technology to realize disaggregated storage. In
NVMe-oF, storage devices (targets), more precisely NVMe
SSDs, are attached to a high-speed network infrastructure, and
servers (hosts) can access them via the network infrastructure.
To provide transparent access to NVMe SSDs, NVMe-oF host
and target drivers encapsulate NVMe commands and data
within a network protocol, and servers can access them like
local NVMe SSDs.

Currently, two network protocols are supported by NVMe-
oF, remote direct memory access (RDMA) and transmission
control protocol (TCP). RDMA was originally developed
for InfiniBand as a proprietary protocol [3], [4]. It is now
opened to the public and available for Ethernet as well [5]. In
RDMA, packet processing is offloaded to the NIC hardware,

∗Younghoon Kim is the corresponding author.

and it is possible to provide ultra low latency and high
bandwidth. NVMe over RDMA inherits the advantages of
RDMA, and hosts can access the target SSDs with very low
latency. However, it also inherits the limitations of RDMA,
requiring specialized NICs and switches, and vulnerability of
congestion, and this makes it difficult to deploy in a large scale
network. Compared to NVMe over RDMA, the advantages
and disadvantages of NVMe over TCP are clear such that: (a)
TCP is the most popular transport layer protocol and robust
to congestion; (b) NVMe over TCP can be easily deployed
for a large scale network without specialized equipment; but
(c) In performance wise, network latency is higher than that
of NVMe over RDMA because protocol complexity is high
to handle congestion, and packet processing mostly relies on
software stacks. Recent studies on NVMe over TCP have
attempted to optimize and/or offload protocol stacks to reduce
network latency, and it seems that their efforts make significant
progress.

To deploy NVMe over TCP, besides the network per-
formance, a CPU usage issue also needs to be resolved.
Compared when accessing local storage, accessing remote
NVMe SSDs over TCP consumes significant additional CPU
resources for processing NVMe and TCP protocols. On the
target side, it can be minimized with specialized hardware for
offloading NVMe and TCP packet processing [6], [7]. On the
host side running on a commodity server, however, substantial
works for processing NVMe over TCP protocol remain on
the software stack even if we consider recent NICs with TCP
offloading engine (TOE). This additional CPU consumption
results in performance degradation of applications, and it can
cause more serious problems when a server co-hosts CPU-
intensive containers and data-intensive containers. The CPU
usage for processing heavy I/O traffic from data-intensive
containers can increase the completion time of CPU-intensive
containers significantly, and this motivates our work in this
paper to provide CPU isolation for NVMe over TCP in a
containerized environment.

Providing CPU isolation for NVMe over TCP is not trivial
because NVMe and TCP packets are processed by kernel
worker threads on behalf of the corresponding containers.
Several isolation schemes have been proposed in a container-
ized environment for various resources such as CPU [8], [9],
network bandwidth [10], [11], and block I/O [12], but they
are not directly applicable for NVMe over TCP since they

IE
EE

 IN
FO

C
O

M
 2

02
3

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

9-
8-

35
03

-3
41

4-
2/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
53

93
9.

20
23

.1
02

28
88

9

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on January 02,2024 at 07:06:10 UTC from IEEE Xplore. Restrictions apply.

focus on isolation among containers, and resources consumed
for specific containers by kernel worker threads are not con-
sidered. Recently, a CPU isolation scheme, called Iron, has
been proposed in [13]. Iron measures the CPU usages for
processing network packets and charges them to the corre-
sponding containers so that other containers can be protected
from containers generating heavy network traffic. However,
Iron also cannot guarantee CPU isolation for NVMe over TCP
because packets considered in Iron are issued directly from
containers whereas NVMe over TCP packets are issued by
NVMe over TCP kernel workers on behalf of actual containers.

In this paper, we propose a scheme, called isolated NVMe
over TCP (i-NVMe), to provide CPU isolation in a container-
ized environment. In i-NVMe, CPU usages for processing
NVMe and TCP packets are carefully measured and charged
to the corresponding containers. However, accurate measuring
and charging are not enough to provide CPU isolation since
NVMe kernel worker threads are scheduled with a high prior-
ity. To enforce CPU isolation including the NVMe over TCP
kernel worker thread, we provide a dynamic throttling scheme
to control NVMe over TCP traffic. To implement i-NVMe, we
modify the Linux Completely Fair Scheduling (CFS) scheduler
logic and NVMe over TCP driver logic. It is demonstrated
that i-NVMe can protect CPU-intensive containers from data-
intensive containers while maintaining the efficiency of NVMe
over TCP. This paper makes the following significant contri-
butions as follows,
• It is addressed that the CPU usages consumed by NVMe

over TCP worker threads can cause significant degradation
in the performance of CPU-intensive containers. Our mea-
surements reveal that the completion time of CPU-intensive
workload can increase up to almost 2 times. To the best of
our knowledge, this is the first attempt to investigate the
impact of NVMe over TCP in a containerized environment.

• A novel scheme, i-NVMe, is proposed to limit the impact
of NVMe over TCP on the performance of CPU-intensive
containers. i-NVMe measures the CPU usages of NVMe
over TCP worker threads, charges them to each container
in proportion to its I/O usage, and dynamically throttles
them to enforce isolation of CPU resources. Additional tail
latency caused by throttling is also handled in a k-split
manner.

• We evaluate i-NVMe through extensive experiments on a
real testbed. It is shown that i-NVMe can provide accurate
CPU isolation with both benchmark workloads and real
distributed computing workloads.
The remaining part of this paper is organized as follows: In

Section II, we present background and motivation of i-NVMe;
In Section III, we present the design and implementation of
i-NVMe; In Section IV, we evaluate the performance of i-
NVMe with extensive experiments; In Section V, related work
is presented; and In Section VI, we conclude this paper.

II. BACKGROUND AND MOTIVATION

In this section, we describe how NVMe over TCP works
in the Linux-containerized environment and how these pro-

cessing steps interfere with CPU resources allocated to other
containers.

A. NVMe over TCP Host Driver

In NVMe over TCP, there are two types of nodes: host nodes
and target nodes. Host nodes access remote SSDs in a target
node using the NVMe over TCP host driver, and the target
node handles received NVMe over TCP requests from hosts.
In this work, we focus on the host-side driver, which runs
on the containerized environment. The NVMe over TCP host
driver is implemented using Linux’s block layer structure and
a TCP network stack without modification. More specifically,
the NVMe over TCP host driver receives requests from the
block layer of Linux, generates NVMe over TCP commands
and protocol data units (PDUs), and sends them to the target
node through the TCP network stack. To convert the block
layer’s requests into NVMe over TCP commands and forward
them to the TCP network stack, the current NVMe over TCP
host driver uses the workqueue in Linux [14]. When a host
node is connected to a target node with NVMe over TCP, the
host driver opens one TCP connection per core and a worker
thread, called nvme tcp wq, with WQ HIGHPRI option. An
nvme tcp wq thread is scheduled when a user requests block
I/Os to a remote SSD. It encapsulates requests and sends them
to the target node over the TCP connection. The transmitted
requests are processed by the NVMe over TCP target driver
and the NVMe SSD of the target node, and the responses
will be sent over the same TCP connection. The nvme tcp wq
thread then handles those responses and returns the results to
the upper layer.

The detailed operation of a nvme tcp wq thread is as follow:
When it is scheduled, it sends requests in its list and handles
responses from the TCP connection as many as possible until
either the deadline is reached or there is no more request or
response. Here, the deadline is set by the NVMe over TCP host
driver to prevent the nvme tcp wq thread from consuming too
much CPU resources, and the default value of the deadline
is 1 ms. It is re-scheduled either (a) immediately if it was
scheduled out due to the deadline, or (b) upon arrival of a
new request if there was no more request. The operation of a
nvme tcp wq thread is effective to handle NVMe I/O requests
with a minimal latency, but there is a risk of overusing the
CPU. In our experiments, we can find that almost 50% of
CPU resources can be consumed by the nvme tcp wq thread
when IOPS is high.

B. Linux CFS Scheduler

We present a brief background on Linux scheduling in a
containerized environment to understand how NVMe over
TCP can break CPU isolation. Most tasks, including user
threads and a nvme tcp wq thread running on a container-
ized environment, are scheduled using the CFS scheduler in
Linux [9].

The CFS scheduler operates to ensure that each task can
consume as much CPU as the time distributed in proportion to
its nice value in Linux, which indicates each task’s priority.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on January 02,2024 at 07:06:10 UTC from IEEE Xplore. Restrictions apply.

For instance, when the nvme tcp wq thread, assigned the
highest nice value using the WQ HIGHPRI option, and a
user thread are running on the same core, the user thread is
scheduled only for a small portion of the CPU time. Since
nvme tcp wq is scheduled out when there is no I/O to handle
or its deadline is reached, the actual usage does not appear
extreme, but, when heavy I/O occurs, nvme tcp wq occupies
the CPU first and is executed.

The CPU usages of containers are limited by cgroups. The
CFS scheduler is implemented such that each container can use
as much CPU as a quota during a period, and the user can
adjust the usage by setting the quota for each container. As
explained in [9], [13], the CFS scheduler keeps a variable,
runtime, which indicates the CPU usage of a container
within the current period. When the runtime exceeds its quota,
the container is throttled and rescheduled in the next period.
A container’s runtime is reset for each period.

C. CPU Isolation Violation of NVMe over TCP

When we use NVMe over TCP to access remote SSDs, there
are two possible risks to violate CPU isolation. First, the CPU
usage of a nvme tcp wq thread increases as the NVMe traffic
increases. Since the kernel thread is running with the highest
priority, it can account for CPU time as much as it needs.
Then, containers cannot use their quotas over a period, and
isolation breaks.

Second, as described in [13], sending and receiving TCP
packets require frequent CPU preemption for interrupt han-
dling. In Linux, packets are processed by two parts of inter-
rupts, a top-half (hardware interrupt) and a bottom-half (soft-
ware interrupt). To limit the impact of hardware interrupts, the
top-half is only used to interface with NICs and to schedule
the bottom-half. Actual processing for packets is performed
by the bottom-half. Since software interrupts run in process
context, CPU quota of any container can be used to process
packets for other containers, and this also breaks isolation.

To demonstrate how NVMe over TCP harms the per-
formance of other containers, we perform preliminary ex-
periments with the following experimental environment: n
containers are created to share one core, and each container’s
CPU quota is configured as period/n so that all containers can
equally occupy the CPU. We use a 40 Gbps TCP/IP network
to connect an NVMe over TCP host and a target with NVMe
SSDs. A detailed explanation of the experimental environment
is provided in Section IV. Among n containers, one (denoted
as victim) runs a CPU-intensive sysbench workload, and
the others (denoted as interferers) run both FIO [15] to
generate NVMe over TCP traffic and sysbench to consume
the remaining quota. Because these containers share the same
core, NVMe over TCP interference occurs. Note that we use
4 KB mixed workloads that issue both 4 KB random read
and 4 KB random write requests. We vary NVMe traffic
IOPS, and measure the victim’s completion time to observe the
impact of NVMe over TCP on CPU intensive workload. Then,
we calculate a degrading factor, the fraction of the victim’s
completion time when nvme tcp wq is scheduled versus when

10 20 40 60 70 90
kIOPS

1.0

1.2

1.4

1.6

1.8

2.0

De
gr
ad

in
g
Fa
ct
or

n=2
n=3

n=5
n=8

Fig. 1: Degrading Factor with interferers

only sysbench consumes the CPU.
Figure 1 shows the results with various numbers of inter-

ferers, and the interferer’s target IOPS varies from 10 K, 20
K, 40 K, to unlimited. The x-axis denotes the sum of IOPS
of interferers, and the y-axis indicates the degrading factor.
As IOPS increases, the CPU usage required to handle I/O
requests also increases, which leads to a higher degrading
factor with more severe interference. It is also shown that the
degrading factor increases as more interferers are in presence.
In these experiments, increase in NVMe I/O usage can increase
the degrading factor to 1.92. This means that interferers will
consume more CPU than their quota through nvme tcp wq,
and this additional uncharged CPU usage can break CPU
isolation in a containerized environment.

Our observations and their implications are summarized as
follows:
• The CPU usage consumed by nvme tcp wq, a worker

thread for NVMe over TCP, should be taken into consider-
ation when calculating containers’ CPU usages.

• Network traffic from the NVMe over TCP driver is handled
by interrupts, and it consumes the quota of other containers
by preempting them. The sources of traffic should be
specified for precise CPU usage accounting.

• nvme tcp wq is scheduled with the highest priority in the
Linux CPU scheduler, so it needs to be controlled to
reduce excessive CPU usage that lowers other containers’
performance.
To this end, we conclude that it is necessary to consider

above observations when designing a new NVMe over TCP
host driver with CPU isolation.

III. DESIGN AND IMPLEMENTATION OF I-NVME

To realize CPU isolation in a containerized environment, we
design i-NVMe scheme performing the followings: The CPU
usage of the worker for handling NVMe over TCP traffic is
firstly measured. This CPU usage is considered as a part of
interferers’ operations, and it is charged to the corresponding
interferers. By charging, we can enforce interferers to consume
less CPU usages, but still the worker can break CPU isolation
because it runs with the highest priority. To solve this problem,
i-NVMe throttles the worker with a dynamically adjusted

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on January 02,2024 at 07:06:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: The structure of i-NVMe

threshold when isolation violation is detected. When throttling
the worker, to avoid unnecessary latency of requests arriving
during the throttling time, we split the throttling time into
several short pieces (k-split throttling). The basic operations
of i-NVMe are summarized as follows,
1. Measuring the CPU usages consumed by the NVMe over

TCP host driver and TCP network stack.
2. Charging measured usages in the Linux CFS scheduler.
3. Throttling NVMe over TCP worker thread in k-split manner

to prevent it from overusing CPU too much.
Figure 2 shows a brief structure of i-NVMe, including an
example of NVMe over TCP applied to a containerized
environment. In this example, c0 and c1 are interferers, and
c2 is the victim. When two containers c0 and c1 request
I/O in their applications, nvme tcp wq is scheduled to handle
them. i-NVMe measures nvme tcp wq worker usages and the
preempted time for interrupt handling for nvme tcp wq traffic.
The CPU usages of the worker and the preempted time are
charged to the interferers in proportion to their NVMe traffic,
and also the preempted time from the victim is added to the
victim’s quota for compensation. Meanwhile, NVMe packet
processing is properly throttled to meet the CPU isolation
conditions.

A. CPU Usage Measurements

On the NVMe over TCP driver, nvme_tcp_try_send
and nvme_tcp_try_recv functions are invoked in
nvme tcp wq to handle requests and responses, respectively.
To measure the per container nvme tcp wq usage, we account
for the elapsed time of each function call. Then, we retrieve
the owner of each handled request using the block layer
request structure, and update the nvme tcp wq usage to each
container’s task_group structure in Linux.

The algorithm described in Iron [13] is used for mea-
suring the interrupt handling cost that occurs when trans-
mitting or receiving each packet. In Iron, the elapsed times
of netif_receive_skb and net_tx_action func-
tions are calculated when transmitting and receiving packets.
At the same time, they also measure fixed costs such as
hardIRQ handling, softIRQ handling, and socket buffer (skb)
garbage collection, and distribute them to each container in
a weighted fashion. Similarly, we implement the logic to
measure the network traffic-handling cost from the Linux
network stack and check whether the processed packets are

Algorithm 1 Global runtime update
1: if runtime > 0 then
2: need reset← True
3: end if
4: wq usage← wq usage of(task group)
5: if wq usage > 0 then
6: if runtime > wq usage then
7: runtime← runtime− wq usage
8: set wq usage(task group, 0)
9: else

10: runtime← 0
11: remain usage← wq usage− runtime
12: set wq usage(task group, remain usage)
13: end if
14: else
15: if need reset is True then
16: set reset flag(True)
17: end if
18: net gain← net gain of(task group)
19: runtime← runtime+ net gain
20: end if
21: if group idled() and runtime > 0 then
22: runtime← 0
23: end if
24: set timer(now + period)

owned by nvme tcp wq. If a packet is sent from or destined
to the nvme tcp wq, we accumulate its measured cost in the
nvme tcp wq context. Then, we distribute the measured costs
from the network stack in proportion to each container’s I/O
usage. This weighted fashion distribution is essential for i-
NVMe because it is impossible to distinguish whose requests
are on the network stack because the actual packets are owned
by nvme tcp wq. At the same time, we update the net_gain,
which indicates the preempted time of each task_group.
We need this two-step distribution method because it is not
possible to identify which container should be charged the
calculated costs during network stack processing.

B. Integrating with the CFS Scheduler

Limiting inteferers’ runtime based on uncharged CPU usage
measured in Section III-A is implemented on the Linux CFS
scheduler. In the Linux CFS scheduler, each container is
managed as a task_group, and it is allowed to run for
a given quota during a period. So in short, we can limit
each container’s CPU usages by subtracting un-imposed CPU
usages measured above from its quota. To limit the total CPU
usage (by applications and by NVMe traffic) of a container
within its quota, we subtract the measured CPU usage for
NVMe traffic from the quota for each container. In this section,
we describe the charging scheme of i-NVMe in the Linux
CFS scheduler. In particular, we present two algorithms for
charging uncharged CPU usages caused by remote I/Os to the
global and local state updates of the Linux CFS scheduler.

The CFS scheduler refills the quota at the runtime of
each task_group for each period in the global state. As
a local state, the rt_remain value is assigned as much
as slice from runtime. As each task_group consumes
CPU, the CFS scheduler decrements rt_remain of the

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on January 02,2024 at 07:06:10 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Local state update
1: amount← 0
2: min amount← slice− rt remain
3: wq usage← wq usage of(task group)
4: if wq usage > 0 then
5: if runtime > wq usage then
6: runtime← runtime− wq usage
7: set wq usage(task group, 0)
8: else
9: runtime← 0

10: remain usage← wq usage− runtime
11: set wq usage(task group, remain usage)
12: end if
13: end if
14: if runtime > 0 then
15: amount← min(runtime,min amount)
16: runtime← runtime− amount
17: end if
18: rt remain← rt remain+ amount

task_group. When rt_remain is less than zero, the
CFS scheduler attempts to refill rt_remain from the global
runtime variable. When both rt_remain and runtime hit
zero, the task_group is throttled. We charge the measured
nvme tcp wq usage to interferers, as described in Algorithm 1
and 2.

Algorithm 1 represents the global runtime update scheme.
In i-NVMe, wq_usage includes the CPU usage consumed by
nvme tcp wq and the distributed network interrupts handling
costs, as explained in Section III-A. Therefore, wq_usage
is subtracted from the runtime when wq usage > 0. If
wq_usage is larger than its remaining runtime, the runtime
is reset to 0, and the remaining wq_usage is updated to the
task_group’s wq_usage again as in Lines 10-12. When
wq_usage is 0, it means that this task_group does not use
I/O, and net_gain, which is the preempted time to handle
the network traffic of nvme tcp wq, is added to runtime on
Line 19 in Algorithm 1.

Similarly, Algorithm 2 shows the local rt_remain update
scheme. When rt remain ≤ 0, the CFS scheduler calls this
function and refills rt_remain using the runtime value.
Before the value amount is determined, i-NVMe decrements
the runtime as wq_usage when wq usage > 0.

C. NVMe over TCP Worker Throttling

To observe the impact of the aforementioned measuring
and charging scheme, we employ the scheme on the same
experiment setup described in Section II-C. Although the
measuring and charging scheme is enabled, and it works
correctly, the degrading factor of the victim is still measured
high at 1.411 while it was 1.569 without the scheme.

This occurs for two reasons: (a) Limiting the CPU us-
ages of interferers is not sufficient to increase the CPU
usage of the victim. Since the CFS scheduler selects the
process (the scheduling unit) with the lowest vruntime,
and nvme tcp wq has the highest priority and the low-
est vruntime, it is scheduled first. This means that
nvme tcp wq may consume the remaining CPU time due to

Algorithm 3 nvme tcp wq throttling
1: if throttled then
2: return NULL
3: end if
4: if runtime ≥ T

k
then

5: num throttle← num throttle+ 1
6: if num throttle is k then
7: T ← T + αµs
8: num throttle← 0
9: end if

10: throttled← True
11: τ ← Period−T

k
12: schedule work at(nvme tcp wq, τ)
13: return NULL
14: else
15: request← get first request from queue()
16: return request
17: end if

the CPU quota reduction of interferers; and (b) This occurs
because nvme tcp wq is frequently scheduled when I/O re-
quests are generated at a high rate. nvme tcp wq is scheduled
when a request is enqueued, and the previous nvme tcp wq
ends owing to its deadline. Therefore, when many I/O requests
occur, nvme tcp wq is also frequently scheduled, which leads
to high CPU consumption of nvme tcp wq.

To cope with this issue and make the victim con-
tainer consume as much CPU as its quota, we throt-
tle nvme tcp wq when its CPU usage exceeds a thresh-
old T . It is initially set as a half of the total quota of
interferers, (io used quota/2). Algorithm 3 presents the
throttling scheme. On nvme_tcp_fetch_request, when
nvme tcp wq’s runtime exceeds T , the worker does not fetch
the next request from the queue until a new request arrives
from the process. Meanwhile, to prevent nvme tcp wq from
being throttled too long, we schedule nvme tcp wq after
τ . Line 12 schedules nvme tcp wq after τ . We set τ as
(period−T) so that nvme tcp wq can consume CPU only as
much as T during a period.

The biggest concern with the throttling scheme is that it may
increase the latency of each I/O operation. In particular, the tail
latency can increase because I/O operations cannot be handled
when the worker is throttled. We run the same experiment
in Section II-C with n = 2 and measure the average and
99.99% tail latency of a 4KB random read and 4KB random
write request of FIO application. The average latency is about
151.57µs and 108.53µs for random read and random write,
respectively. Most requests can be handled normally, but some
requests can be delayed by τ due to throttling. These delays
lead to significant increase in the request’s tail latency, and
the 99.99% tail latency is over 58 ms, while it is measured
as 13 ms with the default NVMe over TCP driver. To reduce
the I/O tail latency, we design a k-split throttling scheme, in
which we divide a CPU time (T) and a throttling time (τ) into
k small pieces, and alternate them. Lines 4-13 in Algorithm 3
describe how to split the total throttle time into k small sub-
throttles. The impact of the k-splits throttling scheme will be

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on January 02,2024 at 07:06:10 UTC from IEEE Xplore. Restrictions apply.

2 4 8 12 16 20 24 32
k (Split Parameter)

20000

25000

30000

35000

40000

45000

50000

99
.9
9%

 Ta
il
La

te
nc

y
(u
s)

(a) 99.99% Tail latency

2 4 8 12 16 20 24 32
k (Split Parameter)

25

30

35

40

45

kI
OP

S

(b) kIOPS

2 4 8 12 16 20 24 32
k (Split Parameter)

0.900
0.925
0.950
0.975
1.000
1.025
1.050
1.075
1.100

De
gr
ad

in
g
Fa
ct
or

(c) Degrading Factor of victim

Fig. 3: Performance of i-NVMe when k varies from 2 to 32

discussed in Section III-E.
The remaining challenge is how to find a proper threshold

T . We should carefully choose T since i-NVMe isolates
performance of containers based on T . However, finding
an optimal T is not trivial because it is dependent on the
numbers of CPU-intensive and data-intensive containers, the
amount of NVMe traffic, and network conditions, and they are
dynamically changed over time.

To overcome this issue, we design an adaptive threshold
method. In this method, we increase the threshold T with α
µs when nvme tcp wq is throttled as long as victim containers
fully consume their CPU quotas. This allows nvme tcp wq
to consume more CPU usage for processing I/O requests
and responses for data-intensive containers. When victims
fail to exhaust their CPU quotas at the end of each pe-
riod, we detect CPU isolation violation, and decrease T to
max{T − 0.5(T − minT),minT} in nvme tcp wq routine,
where minT is io used quota/2. Here, the max operation is
used to avoid too small T . Notes that, only one nvme tcp wq
per a core operates in a single flow independent of the I/O
behavior of each container, so it can operate without any
locking methods.

D. Adaptive Threshold Method Parameters

In the adaptive threshold method, α and minT primarily de-
termine how much IOPS i-NVMe can serve by increasing the
CPU usage that nvme tcp wq can consume. As α increases,
the average CPU usage of nvme tcp wq also increases, and
accordingly, the average IOPS also increases. At the same
time, this can worsen CPU interference. To find the parameter
pairs that properly maintain both i-NVMe’s IOPS and CPU
isolation, we perform several empirical observations. We vary
α from 1,000 µs to 20,000 µs while performing the experi-
ment in Section II-C with n = 2. Detailed experimental results
are omitted due to space limitation, but it is noted that both
IOPS and degrading factor slightly and linearly increase as we
increase α.

Based on the experiment results and the observation, we
suggest 5,000 to 8,000 µs for the range of α so that i-NVMe
can maintain both NVMe I/O performance and CPU isolation.
Within this range, the user can make i-NVMe work I/O
friendly or conservatively preserve CPU isolation, depending
on the workload type. It is important to note that α values in

the suggested range will properly work with varied network
conditions.
minT determines the minimum CPU usage that

nvme tcp wq may be guaranteed. io used quota/2 in
Section III-C is used to guarantee that nvme tcp wq consumes
half of interferers’ allowed CPU usage. If containers (running
both computations and remote I/Os) require more CPU usages
for computation, minT can be configured to a lower value.

E. k-Split Throttling Parameter

Selecting an appropriate k can also be an important issue
because it can determine the tail latency and IOPS of i-NVMe.
Figure 3 shows the performance variation as k increases. In
these experiments, we create an environment where n is set
to 2, and the interferer container runs 4 KB random read FIO
workload without any rate limit. When k increases, the tail
latency of the read request decreases to 20,000 µs when k is
32, as shown in Figure 3a, because requests can be handled
without waiting for the next sub-quota. On the contrary, the
IOPS in Figure 3b becomes lower when we increase k more
than 16 due to frequent throttling overhead. This effect occurs
when requests that could have been processed in a single sub-
quota are processed in the next round by an excessively large
k. In Figure 3b, when k = 16 or higher, the sub-quota was
smaller than 1.56 ms, which is the I/O latency, so this trend
was shown. It is noted that the degrading factor of the victim
in Figure 3c is not changed much since k does not impact
on the CPU usage of the victim. Therefore, the administrator
must select k in consideration of the performance variation
mentioned above according to the system’s I/O requirements.

IV. PERFORMANCE EVALUATION

TABLE I: Evaluation Setup used in our evaluation

Hardware Configuration
CPU Intel Xeon Sliver 4210 CPU @ 2.20GHz

Memory 32GB
NIC Mellanox ConnectX-5 EX (40G)

NVMe SSD Samsung 970 Pro 512GB

Software Configuration
OS Linux 5.4.72

FIO
Block size=4KB, Direct I/O=on

I/O engine=libaio, norandommap=on
I/O depth=128

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on January 02,2024 at 07:06:10 UTC from IEEE Xplore. Restrictions apply.

10 20 30 40 60
kIOPS

0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

De
gr
ad

in
g
Fa
ct
or

n=2 without i-NVMe
n=2
n=5

n=3
n=8

Fig. 4: Degrading Factor with multiple interferers.

0 5 10 15 20 25
time (s)

0

10

20

30

40

50

CP
U
us
ag

e(
%
)

victim CPU usage (w/o iNVMe)
victim CPU usage (w/ iNVMe)

Fig. 5: victim’s CPU usage with varying workload

We implement i-NVMe on a real testbed and evaluate it
with various remote I/O workloads. Note that all results are
measured on the host side where containers are created.

A. Evaluation Setup

We set up NVMe over TCP testbed with two servers
connected via a 40 Gbps link. Both servers have identical
hardware and software setup as described in TABLE I except
that the target node is equipped with an NVMe SSD. We use
the FIO application with a default I/O depth (128) to generate
NVMe over TCP workloads. Additionally, we enable direct
I/O so that all requests bypass the operating system read and
write caches and directly go through the network and to the
remote SSD. All I/O requests are issued by the asynchronous
I/O library in Linux (libaio).

1 2 3 4 5 6 7
The number of FIOs

10

15

20

25

30

35

40

45

CP
U
us
ag

e
(%

)

Average CPU usage

Fig. 6: CPU usage of nvme tcp wq when n is 8.

B. Benchmark Tests

We first describe how much the CPU isolation issue is
improved by our scheme using benchmark workloads. Figure 4

1 2 4 7
The number of the sysbenchs

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

De
gr

ad
in
g
Fa

ct
or

Without i-NVMe

(a) w/o i-NVMe

1 2 4 7
The number of the sysbenchs

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

De
gr

ad
in
g
Fa

ct
or

With i-NVMe

(b) w/ i-NVMe

Fig. 7: Degrading Factor with multiple victims and single
interferer.

shows the degrading factor of sysbench when we perform
the same experiments as in Section II-C with our proposed
scheme. Note that all experimental setups are the same as
in Figure 1. It is shown that the degrading factor can be
significantly improved with i-NVMe with various IOPS. While
i-NVMe can effectively provide CPU isolation for victims, the
performance of I/O intensive applications can be degraded.
There are two causes of the performance degradation. One is
that the overall CPU usage consumed by nvme tcp wq and
the I/O application is reduced for providing CPU isolation,
and this is inevitable for realizing isolation. The other one is
that the CPU usage of nvme tcp wq is forcibly limited by i-
NVMe. Without i-NVMe, nvme tcp wq can utilize the CPU
with the highest priority, and it does not become the bottleneck
of the I/O application. In i-NVMe, however, we have to decide
how nvme tcp wq and the application share the given CPU
time. If we allocate too much to nvme tcp wq, the application
cannot issue enough I/O requests to consume the CPU usage
of nvme tcp wq. If we allocate too much to the application,
then nvme tcp wq becomes the performance bottleneck of the
application. To observe how nvme tcp wq and the application
share the CPU time in i-NVMe, we perform experiments with
the following scenario. First, we run a FIO application with
40,000 IOPS workload without the CPU limit, and measure
the CPU usage with mpstat. It is observed that the total
CPU usage of nvme tcp wq and the application is 40%. Then,
we run the next experiment with i-NVMe where the CPU
time is limited by 40%, and measure the achieved IOPS. In

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on January 02,2024 at 07:06:10 UTC from IEEE Xplore. Restrictions apply.

Query-1 Query-12 Query-14 Query-15 Query-18
1.00

1.05

1.10

1.15

1.20

1.25

1.30

De
gr
ad

in
g
Fa
ct
or

Without i-NVMe
With i-NVMe

(a) victim is sysbench

Query-1 Query-12 Query-14 Query-15 Query-18
1.00

1.05

1.10

1.15

1.20

1.25

1.30

De
gr
ad

in
g
Fa
ct
or

Without i-NVMe
With i-NVMe

(b) victim is wordcount

Query-1 Query-12 Query-14 Query-15 Query-18
1.00

1.05

1.10

1.15

1.20

1.25

1.30

De
gr
ad

in
g
Fa
ct
or

Without i-NVMe
With i-NVMe

(c) victim is pi estimation

Fig. 8: Degrading Factor when a victim shares resources with MySQL.

the result, it is shown that the IOPS is in range between
38,600 and 39,500. This implies that i-NVMe can provide
CPU isolation without serious performance degradation of I/O
intensive applications by properly balancing CPU usages of
nvme tcp wq and the application when the total CPU usage
is identical.

Figure 5 shows in detail how our scheme preserves the
victim’s CPU quota. We measure the CPU usage changes
of the victim’s sysbench when FIO issues remote I/Os with
maximum rates for five seconds and is paused for another
five seconds, repeatedly. In the case of a normal Linux kernel
without i-NVMe, the victim cannot utilize its quota when
remote I/Os are issued as shown with the dotted line in
Figure 5. It implies that the victim’s CPU quota is interfered
by FIO workload. With i-NVMe, the victim utilizes its CPU
quota stably.

Figure 6 shows the variance of nvme tcp wq’s CPU usage
when the number of interferers varies from one to seven when
n is eight. The x-axis denotes the number of FIOs among
eight containers, and the rest of containers run sysbench as
victims. More FIO containers issue more remote I/Os, and
io used quota increases with it. It makes a higher T value
with our proposed adaptive threshold method resulting in an
increase in CPU usage of nvme tcp wq.

Even if the number of victims increase, i-NVMe can pre-
serve CPU isolation. In Figure 7, we run a single interferer
with the maximum IOPS while varying the number of victim
containers from one to seven, and measure the degrading factor
of each victim container. Without i-NVMe, the degrading
factors increase up to 65%, whereas i-NVMe preserves them
lower than 7%. Note that the degrading factors of victims in
Figure 7a tend to decrease as n increases. It is because that
a less CPU quota is allocated to the single interferer with
larger n, and the maximum IO usage and the CPU usage of
nvme tcp wq also decrease.

C. Real Application Tests

To evaluate whether i-NVMe performs well with real ap-
plications, we run MySQL as an interferer. In Figure 8, the
MySQL server is configured to store tables in the remote
SSD. When queries are requested, I/O requests are generated,
and nvme tcp wq is scheduled to handle them. Note that we
use five TPC-H [16] sample queries, query types 1, 12, 14,

Query-1 Query-12 Query-14 Query-15 Query-18
0

5

10

15

20

25

30

Qu
er
y
Co

m
pl
et
io
n
Ti
m
e
(s
)

(1000, 1)
(1000, 8)

(8000, 8)
w/o i-NVMe

Fig. 9: TPC-H Query Completion time
with various α and k (n is 2).

15, and 18 to generate I/Os. These query types consume
sufficient CPU to fully utilize the MySQL container quota.
Detailed explanations of sample queries are presented in [17].
For the victim, in addition to sysbench, we use two popular
applications in distributed computing: wordcount, which
counts the word occurrence frequency in a big file, and pi
estimation, which computes the value of π.

With sysbench in Figure 8a, our scheme increases the
victim’s completion time only by less than 7% for all query
types, whereas it increases up to 21% without i-NVMe. In the
case of query type 1, MySQL generates fewer I/O requests
than the others, so that the degrading factor is lower than
others. In Figures 8b and 8c, it is shown that the degrading
factor can be efficiently contained with i-NVMe even when
the interferer and the victim are real applications. In the case
of wordcount, the average degrading factor of i-NVMe is
slightly higher than other results since wordcount reads a
file from the local file system, and unexpected contentions
occur in the block layer.

D. I/O Performance Trade-off

We measure the completion time of each TPC-H sample
query with various k and α pairs to understand the impact
of i-NVMe on I/O performance with real applications. Other
experimental setups are the same as those in Section IV-C.
Figure 9 shows the average completion time of each TPC-H
query type. The completion times of all query types decrease
as both α and k increase owing to the shorter tail latency

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on January 02,2024 at 07:06:10 UTC from IEEE Xplore. Restrictions apply.

Q-1 Q-2 Q-3 Q-4 Q-5 Q-6 Q-7 Q-8 Q-9 Q-10 Q-11 Q-12 Q-13 Q-14 Q-15 Q-16 Q-17 Q-18 Q-19 Q-20 Q-21 Q-220

10

20

30

40

50

60

70

Qu
er

y
Co

m
pl

et
io

n
Ti

m
e

(s
)

114.8825 106.235 176.39 169.0525 Without i-NVMe
With i-NVMe

Fig. 10: TPC-H Query Completion Time for all sample query types (k, α is 8 and 8000 and n is 2).

and better I/O performance. It implies that a larger split
parameter (k) and an increasing factor (α) can have positive
effects on latency-sensitive applications. All parameter pairs in
Figure 9 maintain the degrading factor within 7%. However, a
large k (k > 16) decreases NVMe over TCP’s IOPS as shown
in Figure 3b. Therefore, the cloud administrator who applies
i-NVMe should carefully adjust parameters according to the
pattern required by the container’s workloads, so that they can
balance I/O performance-CPU isolation trade-off.

Lastly, Figure 10 shows the average completion time of
all TPC-H query types with the parameter pair, (k, α) =
(8, 8000), which is used for all other tests. Considering the
result of the figure and other results together, we can conclude
that i-NVMe provides a high level of CPU isolation without
significant performance degradation for real-world applica-
tions that do not use heavy I/O.

V. RELATED WORK

In recent years, there have been several studies to optimize
or re-design the NVMe over TCP stack in performance per-
spective such as Reflex [18] and i10 [19]. ReFlex introduced
the user-level remote flash access stack, and it was shown that
ReFlex can generate a high I/O throughput with low latency;
however, modification of existing applications is inevitable.
In addition, the use of such user space stacks is not suitable
for containerized environments in which various users and
workloads exist. It prevents other applications from using the
normal kernel stack.

i10 provided high-performance TCP-based remote storage
stacks without user-level protocols or additional expensive
hardware. Through optimizations within the Linux kernel such
as resource dedication in a proper manner and batching, i10
shows a similar performance to NVMe over RDMA. Despite
the i10’s performance improvement, batching without con-
sidering the containerized environments can cause additional
interference issues. As the CPU usage consumed by i10 itself
is not properly charged, the problem pointed out in our study
is likely to appear. The performance of the TCP based remote
storage stack is continuously increasing, but it is hard to
exploit them in the containerized environments. It is because

they are not compatible with different types of containers, and
the performance interference is not considered.

Many studies pointed out the interference problems when
processes share resources and suggested resource isolation
schemes to resolve them. Especially, some of them have
investigated ways to isolate each process or group’s CPU us-
age [9], [20], [21], network bandwidth [22]–[24], and storage
resource [25]–[27]. These studies are effective to allocate and
measure each container’s resource usage and isolate them,
but they cannot handle indirect CPU usages caused by kernel
workers as pointed out in this study.

The indirect resource usages caused by different types of
kernel stack processing were also discussed in several previous
studies. IRON [13] handled the preempted CPU usage caused
by network interrupts. mClock [28], SplitIO [26] measured
block I/O processing overhead and designed tagging schemes
for accounting. They effectively measured these hidden costs
in a per-container manner. But, they only considered the
resource usages consumed by specific containers and the stack
processing costs of directly generated traffic, so they are not
applicable to NVMe over TCP.

VI. CONCLUSION

This study proposed i-NVMe to resolve the CPU isolation
violation of NVMe over TCP. We measured, charged the CPU
usages consumed by NVMe over TCP proportional to each
container’s I/O usage, and throttled its traffic if necessary.
With carefully selected parameters, we maintained the balance
between i-NVMe’s performance and CPU interference. Our
extensive experiments on the real testbed showed that i-NVMe
significantly lowered CPU interference caused by indirect CPU
usages for handling NVMe over TCP I/O traffic, and CPU
isolation was successfully enforced among CPU-intensive and
data-intensive containers.

ACKNOWLEDGMENT

This work was supported by the National Research
Foundation of Korea(NRF) grant funded by the Ko-
rea government(MSIT). (NRF-2020R1A2C2009809, NRF-
2021R1C1C1009778.) We would like to thank the anonymous
reviewers for their insightful comments and suggestions.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on January 02,2024 at 07:06:10 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] J. Taylor, “Facebook’s data center infrastructure: Open compute, disag-
gregated rack, and beyond,” in Optical Fiber Communication Confer-
ence. Optical Society of America, 2015, pp. W1D–5.

[2] M. Vuppalapati, J. Miron, R. Agarwal, D. Truong, A. Motivala, and
T. Cruanes, “Building an elastic query engine on disaggregated storage,”
in 17th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 20), 2020, pp. 449–462.

[3] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia, “A remote
direct memory access protocol specification,” RFC 5040, October, Tech.
Rep., 2007.

[4] I. T. Association et al., “Infinibandtm architecture specification volume
1 release 1.3 (general specifications),” 2015.

[5] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“Rdma over commodity ethernet at scale,” in Proceedings of the 2016
ACM SIGCOMM Conference, 2016, pp. 202–215.

[6] 100g kernel and user space nvme/tcp using chelsio toe. [Online].
Available: https://www.chelsio.com/wp-content/uploads/resources/t6-
100g-spdk-nvmetoe.pdf

[7] Nvme over tcp test report with the mellanox toe. [Online]. Available:
https://community.mellanox.com/s/article/NVMe-over-TCP-Test-Report

[8] L. Cherkasova, D. Gupta, and A. Vahdat, “Comparison of the three cpu
schedulers in xen,” Performance Evaluation Review, vol. 35, no. 2, p. 42,
2007.

[9] P. Turner, B. B. Rao, and N. Rao, “Cpu bandwidth control for cfs,”
2010.

[10] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar, A. Greenberg,
and C. Kim, “Eyeq: Practical network performance isolation at the
edge,” in 10th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 13), 2013, pp. 297–311.

[11] L. Cheng and C.-L. Wang, “Network performance isolation for latency-
sensitive cloud applications,” Future Generation Computer Systems,
vol. 29, no. 4, pp. 1073–1084, 2013.

[12] Linux control group block io controller. [Online].
Available: https://www.kernel.org/doc/Documentation/cgroup-v1/blkio-
controller.txt

[13] J. Khalid, E. Rozner, W. Felter, C. Xu, K. Rajamani, A. Ferreira,
and A. Akella, “Iron: Isolating network-based {CPU} in container
environments,” in 15th {USENIX} Symposium on Networked Systems
Design and Implementation ({NSDI} 18), 2018, pp. 313–328.

[14] Linux workqueue documentations. [Online]. Available:
https://www.kernel.org/doc/html/latest/core-api/workqueue.html

[15] J. Axboe. (2019) Flexible io tester (fio) ver 3.13. [Online]. Available:
https: //github.com/axboe/fio

[16] Tpc-h benchmarks. [Online]. Available: http://www.tpc.org/tpch/
[17] Tpc-h sample query documentations. [Online]. Avail-

able: https://docs.deistercloud.com/content/Databases.30/TPCH Bench-
mark.90/Sample querys.20.xml

[18] A. Klimovic, H. Litz, and C. Kozyrakis, “Reflex: Remote flash=local
flash,” ACM SIGARCH Computer Architecture News, vol. 45, no. 1, pp.
345–359, 2017.

[19] J. Hwang, Q. Cai, A. Tang, and R. Agarwal, “{TCP}≈{RDMA}: Cpu-
efficient remote storage access with i10,” in 17th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 20), 2020,
pp. 127–140.

[20] X. Zhang, E. Tune, R. Hagmann, R. Jnagal, V. Gokhale, and J. Wilkes,
“Cpi2: Cpu performance isolation for shared compute clusters,” in Pro-
ceedings of the 8th ACM European Conference on Computer Systems,
2013, pp. 379–391.

[21] D. B. Bartolini, F. Sironi, D. Sciuto, and M. D. Santambrogio, “Au-
tomated fine-grained cpu provisioning for virtual machines,” ACM
Transactions on Architecture and Code Optimization (TACO), vol. 11,
no. 3, pp. 1–25, 2014.

[22] V. Jeyakumar, M. Alizadeh, D. Mazieres, B. Prabhakar, and C. Kim,
“Eyeq: Practical network performance isolation for the multi-tenant
cloud,” in 4th {USENIX} Workshop on Hot Topics in Cloud Computing
(HotCloud 12), 2012.

[23] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “Faircloud: Sharing the network in cloud computing,” in
Proceedings of the ACM SIGCOMM 2012 conference on Applications,
technologies, architectures, and protocols for computer communication,
2012, pp. 187–198.

[24] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner, and J. R.

Santos, “Elasticswitch: Practical work-conserving bandwidth guarantees
for cloud computing,” in Proceedings of the ACM SIGCOMM 2013
conference on SIGCOMM, 2013, pp. 351–362.

[25] L. Lu, Y. Zhang, T. Do, S. Al-Kiswany, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Physical disentanglement in a container-based file
system,” in 11th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 14), 2014, pp. 81–96.

[26] S. Yang, T. Harter, N. Agrawal, S. S. Kowsalya, A. Krishnamurthy,
S. Al-Kiswany, R. T. Kaushik, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau, “Split-level i/o scheduling,” in Proceedings of the 25th
Symposium on Operating Systems Principles, 2015, pp. 474–489.

[27] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron,
T. Talpey, R. Black, and T. Zhu, “Ioflow: A software-defined storage
architecture,” in Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles, 2013, pp. 182–196.

[28] A. Gulati, A. Merchant, and P. J. Varman, “mclock: Handling throughput
variability for hypervisor io scheduling.” in OSDI, vol. 10, 2010, pp.
437–450.

Authorized licensed use limited to: Sungkyunkwan University. Downloaded on January 02,2024 at 07:06:10 UTC from IEEE Xplore. Restrictions apply.

